

[1.3] djinni.ai White Paper [1.3]

Maciej Chałapuk 1, Ben Peters 2

ABSTRACT

This white paper outlines the research and development efforts behind djinni.ai's fully
automated software development platform, which aims to transform traditional software
creation through AI-powered automation. The project addresses the biggest technical
hypothesis: whether a multi-agent system (MAS) using large language models (LLMs) can
autonomously develop complex software systems through long-running processes while
delivering high-quality output.

The R&D journey began with advanced prompting techniques, evolving into a proprietary
MAS framework designed to handle the challenges of coding automation. Initial
experiments identified error accumulation as a critical issue, which was mitigated by
modeling software development as a series of conversations between AI agents. In June
2024, the first success was achieved with a system built entirely by the Coding Daemon,
validating the feasibility of the approach.

Subsequent experiments tested various LLMs, with the claude-3-opus model achieving an
82% success rate in meeting software specifications. Metrics for correctness, efficiency,
and cost-effectiveness were established, demonstrating up to a 30x reduction in deve-
lopment costs and a 24x increase in efficiency compared to traditional methods. Long term
djinni.ai is aiming for five nines (99.999%) success rates.

The R&D efforts continue to focus on scaling the platform’s capabilities to handle more
complex systems, codifying more nuanced technical knowledge in advanced heuristics, and
optimizing infrastructure to achieve convergence times under three minutes. Future work
will incorporate open-source LLMs, custom hardware, and proprietary models to improve
efficiency and reduce costs further.

DECEMBER, 2024 1/8

1. BACKGROUND
1.1. LARGE LANGUAGE MODELS

In the first two decades of the 21st century, the aim of
interactive software was to assist humans in their decision-
making processes and optimize the time spent on tasks that
did not require human cognitive power. Software developers
focused on automating mundane tasks, aggregating informa-
tion required for making decisions, and presenting it in ways
optimized for human perception. The emphasis on "usability"
observed over recent years highlights this paradigm.

The invention of large language models (LLMs) has changed
the game when it comes to what is possible in software. The
early applications of LLM technology have gained popularity
faster than anything we've seen before. General-purpose AI
assistants (ChatGPT) and AI coding assistants (Github Co-
Pilot) are already being used by hundreds of millions. These
new tools quickly became our favorites but they are just
scratching the surface of what is truly possible.

The cognitive processes of making decisions, previously done
only by human beings, can now be automated using general-
purpose, artificial intelligence (AI) models. This development
is both exciting and very concerning, given its potential to
significantly destabilize the job market (Goldman Sachs esti-
mates that AI could replace up to 300 million jobs 5). It is
essential for AI companies to establish and rigorously adhere
to ethical principles that lead to development, deployment,
and use of AI in a manner that is responsible, fair, and
beneficial to society.

Autonomous decision-making represents the most disruptive
capability to emerge in the software industry since its
inception. Most of the software which was previously
interactively used by human beings must be re-thought and
re-designed, and many of these systems will be replaced by
fully autonomous AI agents. The software industry stands on
the cusp of a transformation which is both vast and inevitable.
Many industries will be revolutionized, and the nature of
human work redefined.

1.2. FULL SOFTWARE AUTOMATION

At djinni.ai, we define full software development automation
as a mechanism that can create complex software systems by
autonomously executing long-running processes without any
human supervision. This level of automation has the potential
to radically transform people's relationship with software, as
it enables rapid software creation without any technical skills.

We see fully automated software development as one of the
biggest challenges in the field of artificial intelligence, and
one we are determined to tackle.

The following is a list of different types of knowledge required
in the development of robust, commercial-grade software.
A mechanism that fully automates software development
must incorporate each of these knowledge types.

➔​ Hard Technical Knowledge - The mechanism must know
the syntactic rules and understand the semantic meaning
of the most popular programming languages, know the
documentation of software libraries and development
tools, understand computer and network architecture,
know commonly used file formats, network protocols, as
well as various software technologies such as database
systems and messaging tools.

➔​ Planning and Problem Solving - The mechanism must
implement various strategies for planning its work and
executing its plan. The planning ability is especially
needed when troubleshooting unforeseen problems.

➔​ Access to Resources - The mechanism must have access
to an integrated development environment as well as
cloud resources. It must have the means to create
software projects, manipulate their source code, and use
software development tools like compilers, linters and
testing frameworks. It must be able to create databases as
well as virtual machines, and deploy created software
onto those cloud resources.

➔​ Technical Meta-Knowledge 35 - The mechanism must
understand how to efficiently apply technical knowledge
to implement commercial-grade systems, which are
scalable, performant, and secure in their design, as well as
robust and observable in their implementation. Meta-
knowledge represents information about practical appli-
cations of formalized knowledge, a subtle nuance in skill
that comes from experience, is difficult to codify, and is
thus likely not found in the training data of today's LLMs.
Technical meta-knowledge is one the most important
terms used throughout this document.

To ease barriers of entry for users without a technical back-
ground, the mechanism should include a conversational UI
through which users define the software they need. The
conversational AI agent must be able to recognise the level of
knowledge of the user and adjust the style of conversation
based on it. It must be able to create a clear and unambiguous
system specification, all while engaging in the conversation.
For the process to be enjoyable, the agent must fill-in many of

DECEMBER, 2024 2/8

the blanks instead of asking the user about every detail. The
process must be swift and iterative, enabling the user to
quickly move through many versions of their software,
specifying more detail in every iteration.

Initial tests indicate that, when compared to traditional
engineering teams, our fully automated software development
platform will optimize cost of software creation by at least
one order of magnitude (10x), and its time by at least two
orders of magnitude (100x). With such a platform, users will
be able to launch MVPs in days instead of months, allowing
them to iterate rapidly, reduce operational costs, and get to
a sustainable business model much quicker. We also expect
that autonomous software development will positively impact
the solopreneur trend, empowering individuals to create
custom software for their businesses in a single day.

1.3. CODE AI MARKET

The software development industry is experiencing high
growth. According to a report from Grand View Research6, the
global custom software development market was valued at
$24 billion in 2021, with projections suggesting that by 2030 it
will reach $150 billion. This exponential growth is being driven
by the increasing demand for personalized software across
various industries. The reported market projections should be
seen as pessimistic as they do not account for the disruptive
potential of emerging AI.

Amid this growth, the industry faces a critical challenge:
an escalating shortage of skilled software developers. Korn
Ferry reports that in the US could lose out on $162 billion of
annual revenues unless it finds more high-tech workers7. This
talent deficit is inflating development costs and compro-
mising the quality of custom software solutions.

The advent of LLM technology has prompted an advance in
the field of coding assistance which began with AI-based code
completion (Github Co-Pilot) and AI-based code generation
(ChatGPT). Those early use-cases enable software engineers
to almost directly interact with language models and review
the generated code in real-time. The experience is akin to
having a pair-programmer, effectively doubling productivity
according to a study done at Github8.

Mid 2024, we saw the first AI coding agents developed by
Cognition AI and Replit. Those tools push automation of
software development one step further, enabling the creation
and execution of a multi-step plan, consisting of different
coding and maintenance operations. The work done by those
agents must still be overseen by a software development

professional but with the option, rather than the necessity, to
interfere in the decision-making process.

These early coding agents combine hard technical knowledge
with planning and problem solving, as well as access to
resources. Since they lack technical meta- knowledge, they
are far from being able to produce large software systems and
commercial-grade code without any human intervention 33.
Oftentimes, these agents make common design mistakes or
use resources in a sub-optimal way 34. The user interfaces of
those agents are integrated into software developer
environments (IDEs) which can be very intimidating for
non-technical users.

Most of the coding AI market produces tools that increase
productivity of human software engineers. It is not clear
whether any of the major players (Github, Cognition, Replit)
will ever upgrade their services into full automation as this
could be interpreted as being against the best interest of their
userbase. Consequently, these enterprises face a classic
innovator’s dilemma-type problem. If any of the major players
decide to take the step to full automation, they will have to
carefully manage the change and execute it over an extended
time period.

Current market conditions offer an opportunity for djinni.ai
to be the first to target non-technical users with a fully
automated software development tool. By implementing an
AI-powered, long-running software development process and
adding technical meta-knowledge on top of the current
capabilities of software development agents, we will provide
a platform for rapid creation of reliable custom software.

2. CONSIDERATIONS
2.1. LIMITED META-KNOWLEDGE IN
LARGE LANGUAGE MODELS

Although LLMs have made tremendous strides in coding
proficiency by being trained primarily on human-generated,
open-source software, they are approaching the limits of
what can be achieved using this data. Open-source projects
offer extensive hard technical knowledge, such as syntax and
semantics of programming languages, as well as common
design patterns, but they fall short when it comes to technical
meta-knowledge. This deeper understanding—how to build
scalable, secure, and performant systems—cannot be fully
learned from open-source code alone. Meta-knowledge is
often implicit, built through years of experience in complex
engineering environments, and LLMs have not yet demon-

DECEMBER, 2024 3/8

strated the ability to acquire or apply this kind of knowledge
in a consistent manner.

To address this challenge, the solution must employ a set of
rules which add meta-knowledge on top of hard technical
knowledge contained in the language models. The solution
must orchestrate how knowledge is applied in different
language model invocations, involving only parts of meta-
knowledge which match the currently executed software
development processes.

2.2. LIMITED REASONING CAPABILITY OF
LARGE LANGUAGE MODELS

While LLMs have shown exceptional proficiency in generating
human-like text and writing code snippets, they often
struggle with applying complex logical reasoning. This
limitation becomes evident in scenarios that require the
understanding and manipulation of intricate relationships,
multi-step problem-solving, or abstract reasoning across
large systems. LLMs are predominantly trained on vast
amounts of human-generated data, which enables them to
mimic patterns and structures in the code, but their
reasoning abilities are still shallow compared to those of
experienced human engineers.

To improve the LLM-based decision-making, complex tasks
can be broken down into smaller, more manageable
sub-decisions. Focusing on incremental steps rather than
attempting to reason through the entire problem at once
increases the probability of achieving an optimal or near-
optimal outcome. Implementing such structured decision-
making schemes significantly enhances the ability of LLMs to
handle complex, multi-faceted software development tasks,
leading to more robust and reliable solutions.

Historically, the reasoning capabilities of LLMs have seen
considerable advancement with each new generation. The
leap from GPT-3 to GPT-4 was especially significant, with
GPT-4 demonstrating a much greater ability to handle
complex tasks. Further refinement came with OpenAI’s
GPT-4o, which is specifically designed to enhance logical
reasoning. Looking ahead, we expect to see more LLMs
focusing on reasoning capabilities, with models designed
explicitly to handle complex, multi-step decision-making
processes, similar to OpenAI’s o1 model. These developments
suggest that LLMs will continue to improve in areas where
they have traditionally struggled, reducing the need for
building complex decision making schemes as workarounds
for their lack of more advanced reasoning capabilities.

3. DJINNI.AI
The traditional approach to development of custom software
is resource-intensive, risky, and often exclusive to larger
enterprises with the capital to absorb the costs. Both high
development expenses and technical complexity can pose
a significant barrier to many small businesses, solopreneurs,
and individuals. As a result, custom software—despite its clear
advantages—remains inaccessible to many, reinforcing the
digital divide and limiting innovation at the grassroots level.

This is where djinni.ai aims to offer a solution. By automating
the entire software development process, djinni.ai seeks to
democratize access to high-quality, custom software, elimi-
nating the need for extensive technical skills or large budgets.
By leveraging the latest advancements in AI, our platform is
expected to reduce the inefficiencies and risks inherent in the
traditional approach to software development. djinni.ai strives
to empower individuals and small businesses to rapidly create
custom software that is scalable, robust, and tailored to their
specific needs.

The following section describes our long-term vision for
djinni.ai software development platform.

3.1. FUNCTIONALITY

At the heart of djinni.ai’s offering is our fully automated
software development platform, designed to streamline the
entire process from idea to deployment.

The journey begins by gathering the user’s requirements
through an intuitive conversation with a competent AI
assistant. The conversational agent is sophisticated enough to
adjust its interaction based on the user’s level of technical
knowledge, ensuring that both experienced developers and
non-technical users alike can easily engage with the product.
The AI assistant works to build a clear and unambiguous
software specification, filling in gaps where necessary,
allowing users to communicate their needs without getting
bogged down in technical details.

Once the specifications are in place, the platform will
seamlessly transition into coding and deployment, both of
which are handled entirely by AI. The process is designed to
be fast and efficient, without the need for any manual coding
or configuration. Within minutes, new, high-quality software
will be written, tested, deployed on cloud infrastructure, and
ready to be used.

djinni.ai will automatically conduct acceptance testing, which
verifies that the software meets the defined specifications and

DECEMBER, 2024 4/8

that it functions as expected. Following the acceptance tests,
the user will be invited to manually review and verify the final
product, making any adjustments or providing feedback for
further iterations. The platform will also offer autonomous
site reliability engineering services (SRE) with AI-driven
daemons continuously monitoring all deployed systems,
detecting runtime issues, and resolving them in real-time,
without any user intervention.

The entirety of the process, from gathering requirements to
testing and deployment is expected to average at 30 minutes
per iteration. This rapid turnaround will allow for swift
revisions and adjustments, enabling users to refine their
software with ease and efficiency.

4. PROOF OF CONCEPT
Djinni.ai's proof of concept (PoC) includes a conversational UI
for project scoping (Chat UI) and a coding mechanism that
implements a proprietary software development process,
knowledge base of patterns and antipatterns, and decision
making heuristics (Coding Daemon). We were able to
extensively test our PoC using a specification of a simple
software system. This section describes the scope of the
experiment and its results in detail.

4.1. BIGGEST TECHNICAL HYPOTHESIS

When djinni.ai was founded (September 2023), we were
uncertain whether it was possible to effectively use LLM
technology for the complex, long-running task of coding an
entire software system. It wasn't clear whether an LLM-based
long-running process would reach its stop condition. We
identified this as the biggest technical hypothesis connected
with djinni.ai.

After extensively researching the field of AI, we identified
multi-agent systems (MAS) as one of the best paradigms to
use for implementing djinni.ai. We expanded our biggest
technical hypothesis to include that an LLM-based multi-
agent system (MAS), when executing a long-running software
development process, would consistently reach its stop
condition while delivering high-quality output.

4.2. ADDITIONAL HYPOTHESES

We aim to reduce the costs of software development for our
customers by an order of magnitude (10x). In order to achieve
profit margins close to 90%, the cost of the development
process must be reduced by at least two orders of magnitude
(100x). We also hypothesized that automating the whole

development process will decrease the time needed to
produce software by at least two orders of magnitude (100x).

When djinni.ai was founded, GPT-4 was the leading LLM.
While it showed great potential, it was uncertain whether its
reasoning abilities could handle fully automated software
development processes. With new versions of large language
models consistently showing improved performance, we
hypothesized that upgrading the underlying model would
enhance the decision-making and planning abilities to the
levels required for automated coding.

We aim to introduce a failover mechanism that automatically
switches the underlying LLM used by the Coding Daemon to
a different provider; removing a single point of failure from
the djinni.ai platform and reducing the risk of depending on
language models provided by a single third-party. Given this
we hypothesized that outputs of flagship LLMs of different
providers would be similar enough for us to build
a well-defined abstraction layer for seamlessly changing LLM
providers.

4.3. RESEARCH AND DEVELOPMENT

Our first attempts at designing a fully automated software
development process (September, 2023) were based on
advanced prompting techniques (tree-of-thought, re-act) but
turned out to be extremely complex. This led us to start
looking for a different approach, one that would better
manage the complexity of the task by introducing multiple
levels of abstraction.

We estimated that a fully automated software development
process would contain a chain of several hundreds of LLM
calls. Our experiences with other LLM-based systems
(ChatGPT) suggested that the biggest problem to solve in such
a long-running process would be the accumulation of errors
between different LLM calls. Since it is impossible to prevent
LLMs from making errors, we needed a solution that would
minimize the number of errors propagated through the
process.

After researching the space of AI, we concluded that modeling
processes using conversations between AI agents would have
the potential to greatly simplify our approach to automated
coding and increase the quality of the output by stopping
error propagation. Seeing the potential to solve both of our
problems—complexity management and error accumulation—
we decided to build our own, commercial-grade framework
for writing multi-agent systems (MAS) and developed it over
the last quarter of 2023.

DECEMBER, 2024 5/8

In January, 2024, we started working on the Coding Daemon
using LLMs from OpenAI. The daemon was designed to be
a multi-agent system that automates the coding process,
using a specification of a software system as its input. We
focused on implementing a multi-phase coding scheme,
including requirements analysis, source code design, imple-
mentation, testing, and integration.

June 11th, 2024 marked a pivotal moment in our R&D efforts, as
we witnessed the first implementation of a software system,
exactly matching its input specification, created by our
Coding Daemon. That same month, we designed correctness
metrics for the generated code and added support for the
language models provided by Anthropic. In the first week of
July, we extensively tested our solution using LLMs of multiple
providers and measured their correctness, efficiency, and
cost-effectiveness for the first time.

4.4. CORRECTNESS METRICS

As part of our R&D efforts, we developed a way to measure
correctness of the software systems produced by djinni.ai's
Coding Daemon. Each run of the Coding Daemon ends with
one of four states, which translates to one of four correctness
metrics.

➔​ Failure: Occurs when the coding machine is unable to
complete the software creation process. The frequency of
incomplete runs is referred to as Failure Rate.

➔​ Convergence: The state where the process of creating the
software system finished without an error. A converged
run doesn't guarantee that the produced software meets
the input specification. The frequency of completed runs
is referred to as Convergence Rate. High Convergence
Rate is crucial for ensuring the system can handle long-
running, complex processes with consistency.

➔​ Success: The state where the process finished, the output
code matches input specification, and the code works. All
successful runs are also converged. The frequency of runs
resulting in code matching the specs is referred to as
Success Rate. It is the primary metric for correctness of
the systems created by the Coding Daemon.

➔​ Perfection: The state where all architectural decisions
were correct and the Coding Daemon did not produce
any dead code. All perfect runs are also successful. The
frequency of optimal code creation is referred to as
Perfect Rate.

4.5. EXPERIMENT
The specification used for testing described a very simple
software system for tracking expenditures. The specification
contained only two features—adding an expenditure and
calculation of total spending—and didn't specify any
non-functional requirements beyond the programming
language. All the runs of the Coding Daemon included in the
experiment used the same input specification.

The experiment included 11 runs of the Coding Daemon using
the claude-3-opus model, 5 runs using the gpt-4o model, and
5 runs using the gpt-4-turbo model. The software systems
resulting from each run of the Coding Daemon were assigned
to one of four ending states (failure, convergence, success,
perfection) after a careful evaluation done by a qualified
software development professional.

4.6. OBSERVATIONS

4.6.1. CORRECTNESS

As illustrated in Figure 10, large differences in success rate of
the Coding Daemon can be observed when changing the
underlying language model. We found that running the
daemon on claude-3-opus model results in 82% success rate
which is the highest out of all the tested models.

A run was considered failed if a critical error was raised
during its execution. Runs which did not fail were considered
convergent. Convergent runs which produced a software
system matching the specification with integration tests
covering its whole functionality were considered successful.
Successful runs which produced no dead code and exactly
followed the meta-knowledge included in the Coding Daemon
were considered perfect.

Figure 10: Correctness metrics

With the success rate of 82%, if we run the same job
simultaneously on three instances of the Coding Daemon, the
probability of getting at least one success will be 99.4%.
We interpret those numbers as reaching high predictability
of the coding process. Our findings validate our biggest
technical hypothesis, which significantly reduces the techno-

DECEMBER, 2024 6/8

logical risk associated with the development of the djinni.ai
platform, and effectively gives us our PoC.

What's important to point out is that the perfect rate of 0%
is consistent with human performance. Human developers
often make suboptimal decisions, some of them conscious,
some not, accumulation of which is referred to as technical
debt. Our analysis suggests that by adding more decision-
making schemes to the Coding Daemon, we'll be able to
increase perfect rates to very high levels, completely out-
performing human developers.

Since the Coding Daemon used in the experiment contains
very little meta-knowledge, the observed levels of correctness
should be seen as very promising. Long-term, we'll be aiming
at 99.999% (five nines) target success rate of the Coding
Daemon, as well as 99% (two nines) target perfect rate.

4.6.2. EFFICIENCY

The efficiency metric we use for the Coding Daemon is
convergence time—the time between the Coding Daemon
receiving a request containing a system specification and fully
implementing a software system described by said input
specification. Since the Coding Daemon has spent most of its
time waiting for responses from the LLMs, the average time
per LLM call and the average time per input/output token
were approximated by dividing the convergence time by the
average number of LLM calls in a convergent run.

As illustrated in Figure 11, the convergence time for the
claude-3-opus model averages a little above one hour.
Assuming that an average software developer could create the
same code (~750 lines) in 24 hours, we have observed a 24x
increase in efficiency compared to human developers.
Although the assumption of 100x better efficiency was not
confirmed by this experiment, we see this assumption as safe.

Our observations suggest that extended LLM response times
are due to rate limits, rather than our provider's efficiency
limits. In our assessment, custom rate limits have the
potential to increase the efficiency of the Coding Demon by at
least an order of magnitude (10x). We expect to achieve
a similar increase in efficiency by running open source
language models on infrastructure under our full control. In
our assessment, possible optimizations of token consumption
in the Coding Daemon will provide additional 5x efficiency
improvement.

Figure 11: Efficiency metrics

Several well-funded startups are currently developing ASIC
(Application-Specific Integrated Circuit) chips, which are
projected to be up to 20x faster than traditional GPUs for
specific AI workloads. Utilizing these chips could lead to
additional 20x improvement in efficiency, drastically reducing
our computation times. Leaders in this space include Groq 30,
SambaNova 31, and Cerebras 32, whose chips are specifically
designed to accelerate AI inference.

Long-term, we aim for convergence time measured on the
"Spending Tracker" specification to be less than 3 minutes.

4.6.3. COST-EFFECTIVENESS

Figure 12 illustrates differences in the cost of running the
Coding Daemon using various language models. Since we did
not observe any convergent runs using the gpt-4-turbo
model, it is not included in the table.

Figure 12: Cost-effectiveness metrics

The cost of convergence when using the claude-3-opus model
averaged at $37.70. Assuming the average annual salary of
software developer to be $100,000 ($384.61 per day) and that
it would take them 3 workdays (24 hours) to implement the
same system (~750 lines of code), we have observed a 30x
decrease in cost when compared to traditional software
development. The assumption of a 100x decrease in cost was
not confirmed by this experiment but the observed levels
would already result in good profit margins (50%), should our
assumptions about pricing be achievable.

We assess that running open source models on infrastructure
under our control has the potential to reduce costs by one
order of magnitude (10x). Additionally, optimizations in token
consumption of the Coding Daemon will provide additional 5x
cost reduction.

The total cost of the experiment amounts to $613.67. To
reduce the cost of the experiment, we decided to focus on

DECEMBER, 2024 7/8

testing the language model which manifested the highest
correctness rates, which resulted in an uneven number of
runs between different models. We aim to track the
correctness and time metrics across all internal releases of
the Coding Daemon. We expect the cost of tracking those
metrics to increase significantly as we add new, more complex
specifications to the benchmark.

4.6.4. MISCELLANEOUS

Changing the provider of the underlying language model did
not require additional changes to the Coding Daemon which
validated one of our additional hypotheses.

Our findings suggest that newer versions of LLMs perform
better not only at simple tasks and in prompting technique
benchmarks but also in complex, long-running processes
containing hundreds of LLM calls.

4.7. CONCLUSION

Through this PoC, we achieved an 82% success rate with the
claude-3-opus model, a milestone that significantly reduces
the technical risks associated with developing a fully
autonomous software development platform. While there
remains a gap between the current efficiency and cost-
effectiveness metrics and our long-term goals, we are
confident that these will be bridged as we continue to
optimize the platform’s architecture, introduce proprietary
expert models, and gain better control over infrastructure.

Looking ahead, our focus will be on extending the scope of
the Coding Daemon to handle more complex software
systems while increasing its ability to make optimal decisions
by incorporating deeper technical meta-knowledge. We anti-
cipate significant improvements in both efficiency and cost
reduction as we introduce token consumption optimizations,
open-source LLMs, and ASIC chips optimized for AI inference.

Our findings strongly suggest that a multi-agent system
powered by large language models can autonomously and
consistently generate fully functioning software systems.
Our biggest technical hypothesis has been validated.

ACKNOWLEDGEMENTS
Many thanks to Tomasz Fortuna for providing consulting in
many technical subjects mentioned in this document and for
just the best attitude towards helping people.

Our profound gratitude to Bogusław Kluge for pointing us in
a very good direction in the latter stages of the PoC.

Special thanks to Filip Victor for motivating the creation of
this whitepaper and for its review.

REFERENCES
[1] Maciej Chałapuk <maciej@djinni.ai>​
[2] Ben Peters <ben@djinni.ai

[5] BBC: AI could replace equivalent of 300 million jobs
https://www.bbc.com/news/technology-65102150

[6] Custom Software Development Market Size Report
https://www.grandviewresearch.com/industry-analysis/cust
om-software-development-market-report

[7] KornFerry: The $8.5 Trillion Talent Shortage
https://www.kornferry.com/insights/this-week-in-leadershi
p/talent-crunch-future-of-work

[8] Github: Copilot’s impact on productivity and happiness
https://github.blog/news-insights/research/research-quanti
fying-github-copilots-impact-on-developer-productivity-and
-happiness/

[14] Github Copilot - The most widely adopted AI dev tool​
https://github.com/features/copilot

[17] Replit: Build software faster​
https://replit.com/

[30] Groq is Fast AI Inference​
https://groq.com/

[31] SambaNova: The World’s Fastest AI Inference​
https://sambanova.ai/

[32] Cerebras Inference: 20x Faster than GPUs​
https://cerebras.ai/

[35] University of Michigan: Meta-Knowledge​
https://web.archive.org/web/20051119163215/http://ai.eecs.
umich.edu/cogarch0/common/prop/metaknow.html

DECEMBER, 2024 8/8

mailto:maciej@djinni.ai
mailto:ben@djinni.ai
https://www.bbc.com/news/technology-65102150
https://www.grandviewresearch.com/industry-analysis/custom-software-development-market-report
https://www.grandviewresearch.com/industry-analysis/custom-software-development-market-report
https://www.kornferry.com/insights/this-week-in-leadership/talent-crunch-future-of-work
https://www.kornferry.com/insights/this-week-in-leadership/talent-crunch-future-of-work
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.com/features/copilot
https://replit.com/
https://groq.com/
https://sambanova.ai/
https://cerebras.ai/
https://web.archive.org/web/20051119163215/http://ai.eecs.umich.edu/cogarch0/common/prop/metaknow.html
https://web.archive.org/web/20051119163215/http://ai.eecs.umich.edu/cogarch0/common/prop/metaknow.html

	[1.3] djinni.ai White Paper [1.3]
	ABSTRACT
	1. BACKGROUND
	1.1. LARGE LANGUAGE MODELS
	1.2. FULL SOFTWARE AUTOMATION
	1.3. CODE AI MARKET

	2. CONSIDERATIONS
	2.1. LIMITED META-KNOWLEDGE IN LARGE LANGUAGE MODELS
	2.2. LIMITED REASONING CAPABILITY OF LARGE LANGUAGE MODELS

	3. DJINNI.AI
	3.1. FUNCTIONALITY

	4. PROOF OF CONCEPT
	4.1. BIGGEST TECHNICAL HYPOTHESIS
	4.2. ADDITIONAL HYPOTHESES
	4.3. RESEARCH AND DEVELOPMENT
	4.4. CORRECTNESS METRICS
	4.5. EXPERIMENT
	4.6. OBSERVATIONS
	4.6.1. CORRECTNESS
	4.6.2. EFFICIENCY
	4.6.3. COST-EFFECTIVENESS
	4.6.4. MISCELLANEOUS

	4.7. CONCLUSION

	ACKNOWLEDGEMENTS
	REFERENCES

